B.Sc. Part-II Paper-I

THERMODYNAMICS, KINETIC THEORY AND STATISTICAL PHYSICS

Unit 1 The laws of thermodynamics: The Zeroth law, first law of thermodynamics, internal energy as a state function, reversible and irreversible change, Carnot's cycle, carnot theorem, second law of thermodynamics. Claussius theorem inequality. Entropy, Change of entropy in simple cases (i) Isothermal expansion of an ideal gas (ii) Reversible isochoric process (iii) Free adiabatic expansion of an ideal gas. Concept of entropy, Entropy of the universe. Entropy change in reversible and irreversible processes, Entropy of Ideal gas, Entropy as a thermodynamic variable, S-T diagram, Principle of increase of entropy. The thermodynamic scale of temperature, Third law of thermodynamics, Concept of negative temperature.

Unit 2 Thermodynamic functions, Internal energy, Enthalpy, Helmholtz function and Gibb's free energy, Maxwell's thermodynamical equations and their applications, TdS equations, Energy and heat capacity equations Application of Maxwell's equation in Joule-Thomson cooling, adiabatic cooling of a system, Van der Waals gas, Clausius-Clapeyron heat equation. Blackbody spectrum, Stefan-Boltzmann law, Wien's displacement law, Rayleigh-Jean's law, Planck's quantum theory of radiation.

Unit-3 Maxwellian distribution of speeds in an ideal gas: Distribution of speeds and velocities, experimental verification, distinction between mean, rms and most probable speed values. Doppler broadening of spectral lines. Transport phenomena in gases: Molecular collisions mean free path and collision cross sections. Estimates of molecular diameter and mean free path. Transport of mass, momentum and energy and interrelationship, dependence on temperature and pressure.

Behaviour of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO₂ Gas. Critical Constants.

Unit 4 The statistical basis of thermodynamics: Probability and thermodynamic probability, principle of equal a priori probabilities, statistical postulates. Concept of Gibb's ensemble, accessible and inaccessible states. Concept of phase space, γ phase space and μ phase space. Equilibrium before two systems in thermal contact, probability and entropy, Boltzmann entropy relation. Boltzmann canonical distribution law and its applications, law of equipartition of energy.

ts Di

Transition to quantum statistics: 'h' as a natural constant and its implications, cases of particle in a one-dimensional box and one-dimensional harmonic oscillator.

Unit-5 Indistinguishability of particles and its consequences, Bose-Einstein & Fermi-Dirac conditions, Concept of partition function, Derivation of Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac Statistics, Limits of B-E and F-D statistics to M-B statistics. Application of B-E statistics to black body radiation, Application of F-D statistics to free electrons in a metal.

TEXT AND REFERENCE BOOKS:

- 1. B.B. Laud, "Introduction to Statistical Mechanics" (Mcmillan 1981)
- 2. F. Reif: "Statistical Physics" (Mcgraw-Hill, 1998).
- 3. K, Haung: "Statatistical Physics" (Wiley Eastern, 1988).
- 4. Thermal and statistical Physics: R.K. Singh, Y.M. Gupta and S. Sivraman.
- 5. Statistical Physics: Berkeley Physics Course, Vol. 5
- 6. Physics (Part-2): Editor, Prof. B.P. Chandra, M.P. Hindi Granth Academy.
- 7. Heat and Thermodynamics: K.W. Zeemansky.
- 8. Thermal Physics: B.K. Agarwal.
- 9. Heat and Thermodynamics: Brij Lal and N. Subramanyam.
- 10. Heat and Thermodynamics: Dayal, Verma and Pandey.
- 11. A Treatise on Heat: M.N. Saha and B.N. Srivastava.

M 118

11-6-18

10 5warm

100118

Scanned by CamScanner

Paper-II WAVES, ACOUSTICS AND OPTICS

Unit 1 Waves in media: Speed of transverse waves on uniform string, speed of longitudinal waves in a fluid, energy density and energy transmission in waves. Waves over liquid surface: gravity waves and ripples. Group velocity and phase velocity and relationship between them. Production and detection of ultrasonic and infrasonic waves and applications.

Reflection, refraction and diffraction of sound: Acoustic impedance of a medium, percentage reflection & refraction at a boundary, impedance matching for transducers, diffraction of sound, principle of a sonar system, sound ranging.

Unit 2 Fermat's Principle of extremum path, the aplanatic points of a sphere and other applications. Cardinal points of an optical system, thick lens and lens combinations. Lagrange equation of magnification, telescopic combinations, telephoto lenses. Monochromatic aberrations and their reductions; aspherical mirrors and Schmidt corrector plates, aplanatic points, oil immersion objectives, meniscus lens. Optical instruments: Entrance and exit pupils, need for a multiple lens eyepiece, common types of eyepieces. (Ramsdon and Hygen's eyepieces).

Unit-3 Interference of light: The principle of superpositions, two slit interference, coherence requirement for the sources, optical path retardations, Conditions for sustained interference, Theory of interference, Thin films. Newton's rings and Michelson interferometer and their applications its application for precision determinations of wavelength, wavelength difference and the width of spectral lines. Multiple beam interference in parallel film and Fabry-Perot interferometer. Rayleigh refractometer, Twyman-Green interferometer and its uses.

Unit-4 Diffraction, Types of Diffraction, Fresnel's diffraction, half-period zones, phasor diagram and integral calculus methods, the intensity distribution, Zone plates, diffraction due to straight edge, Fraunhofer diffraction due to a single slit and double slit, Diffraction at N-Parallel slit, Plane Diffraction grating, Rayleigh criterion, resolving power of grating, Prism, telescope.

1 |6 | 201

11-6-18

Polarized light and its mathematical representation, Production of polarized light by reflection, refraction and scattering. Polarization by double refraction and Huygen's theory, Nicol prism, Retardation plates, Production and analysis of circularly and elliptically polarized light. Optical activity and Fresnel's theory, Biquartz polarimeter.

Unit 5 Laser system: Basic properties of Lasers, coherence length and coherence time, spatial coherence of a source, Einstein's A and B coefficients, Spontaneous and induced emissions, conditions for laser action, population inversion, Types of Laser: Ruby and, He-Ne laser and. Applications of laser: Application in communication, Holography and Basics of non linear optics and Generation of Harmonic.

TEXT AND REFERENCE BOOKS:

- 1. A.K. Ghatak, 'Physical Optics'
- 2. D.P. Khandelwal, Optical and Atomic Physics' (Himalaya Publishing House, Bombay, 1988)
- 3. K.D. Moltev; 'Optics' (Oxford University Press)
- 4. Sears: 'Optics'
- 5. Jenkins and White: 'Fundamental of Optics' (McGraw-Hill)
- 6. B.B. Laud: Lasers and Non-linear Optics (Wiley Eastern 1985)
- 7. Smith and Thomson: 'Optics' (John Wiley and Sons)
- 8. Berkely Physics Courses: Vol.-III, 'Waves and Oscillations'
- 9. I.G. Main, 'Vibrations and Waves' (Cambridge University Press)
- 10. H.J. Pain: 'The Physics of Vibrations and Waves' (MacMillan 1975)
- 11. Text Book of Optics: B.K. Mathur
- 12. B.Sc. (Part III) Physics: Editor: B.P. Chandra, M.P. Hindi Granth Academy.
- 13. F. Smith and J.H. Thomson, Manchester Physics series: optics (John wiley, 1971)
- 14. Born and Wolf: 'Optics'.
- 15. Physical Optics: B. K. Mathur and T. P. Pandya.
- 16. A textbook of Optics: N. Subrahmanyam, Brijlal and M. N. Avadhanulü.
- 17. Geometrical and Physical Optics: Longhurst.
- 18. Introduction to Modern Optics: G. R. Fowels.
- 19. Optics: P. K. Srivastav.

SV 118

11-6.18

11 |6 | 2018

100118

PRACTICALS

Minimum 16 (Eight from each group)

Experiments out of the following or similar experiments of equal standard

- 1. Study of Brownian motion.
- 2. Study of adiabatic expansion of a gas.
- 3. Study of conversion of mechanical energy into heat.
- 4. Heating efficiency of electrical kettle with varying voltage.
- 5. Study of temperature dependence of total radiation.
- 6. Study of temperature dependence of spectral density of radiation.
- 7. Resistance thermometry.
- 8. Thermo emf thermometry.
- 9. Conduction of heat through poor conductors of different geometries.
- 10. Experimental study of probability distribution for a two-option system using a coloured dice.
- 11. Study of statistical distribution on nuclear disintegration data (GM counter used as a black box).
- 12. Speed of waves on a stretched strings.
- 13. Studies on torsional waves in a lumped system.
- 14. Study of interference with two coherent source of sound.
- 15. Chlandi's figures with varying excitation and loading points.
- 16. Measurements of sound intensities with different situations.
- 17. Characteristics of a microphone-loudspeakers system
- 18. Designing an optical viewing system.
- 19. Study of monochromatic defects of images.
- 20. Determining the principle point of a combination of lenses.
- 21. Study of interference of light (biprism or wedge film).
- 22. Study of diffraction at a straight edge or a single slit.
- 23. Study of F-P etalon fringes.
- 24. Study of diffraction grating and its resolving power.
- 25. Resolving power of telescope system.
- 26. Polarization of light by reflection; also cos-squared law.
- 27. Study of optical rotation for any system.
- 28. Study of laser as a monochromatic coherent source.
- 29. Study of a divergence of laser beam.
- 30. Calculation of days between two dates of a year.
- 31. To check if triangle exists and the type of a triangles.
- 32. To find the sum of the sine and cosines series and print out the curve.