Total Pages: 4

KN-262

B.C.A. (Part-I) Examination, 2022 THEORETICAL FOUNDATION OF **COMPUTER SCIENCE**

(Calculus and Statistical Analysis)

[Paper : Second]

Time Allowed: Three Hours

Maximum Marks: 50

Mininum Passing Marks: 17

Note: Attempt all five questions. one question from each unit is compulsory. All questions carry equal marks.

UNIT-I

1. lf

$$f(x) = \begin{cases} \frac{x^3 + x^2 - 16x + 20}{(x - 2)^2}, & x \neq 2 \\ k, & x = 2 \end{cases}$$
62/1000 (1)

KN-262/1000

[P.T.O.]

is continuous at x = 2, find the value k. [10]

OR

Find the value of $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$.

UNIT-II

2. Find
$$\frac{dy}{dx}$$
, when $\sqrt{x^2 + y^2} = \log(x^2 - y^2)$. [10]

OR

Find
$$\frac{dy}{dx}$$
, where $y = x^2 + (\sin x)^{\log x}$.

UNIT-III

3. Find the equation of tangent and normal to the curve

$$x^{2/3} + y^{2/3} = 2$$
 at $(1,1)$. [10]

OR

Find the points of maxima and minima of a function $y = 2x^3 - 3x^2 + 6$.

KN-262/1000 (2)

UNIT-IV

4. A problem in Statistics is given to the three students A, B and C whose chances of solving it are $\frac{1}{2}, \frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved if all of them try independently? [10]

OR

For two events A and B prove that :

$$P(A \cap B) = P(A) \cdot P\left(\frac{B}{A}\right), P(A) > 0$$
$$= P(B) \cdot P\left(\frac{A}{B}\right), P(B) > 0$$

Where $P\left(\frac{B}{A}\right)$ represents the conditional probability of occurrence of B when the event A has already happened and $P\left(\frac{A}{B}\right)$ is the conditional probability of happening of A when B has already happened.

UNIT-V

5. Fit a parabola of second degree to the following data:[10]

x:	0	1	2	3	4	
<i>y</i> :	1	1.8	1.3	2.5	6.3	

OR

Calculate the correlation coefficient for the following heights (in inches) of fathurs (x) and their sons (y):

x:	65	66	67	67	68	69	70	72
<i>y</i> :	67	68	65	68	72	72	69	71

----X----