Printed Pages – 4			(2)	
	J-274		Unit–II	
B.C.A. (Part-II) Examination, 2021 (Theoretical Foundation of Computer Science)		Q. 3.	Solve by Gauss-elimination method :	
	Paper - I		10x + y + 2z = 13	
	NUMERICAL ANALYSIS		3x + 10y + 2 = 14	
	Time Allowed : Three Hours			
Maximum Marks : 50			2x + 3y + 10z = 15	
	Minimum Pass Marks : 20		OR	
Note : Attempt all five questions. One question from		Q. 4.	Apply factorization method to solve the equations :	
	each unit is compulsory. All questions carry equal		3x + 2y + 7z = 4	
	marks.			
	Unit–I		2x + 3y + z = 5	
Q. 1.	Use Newton's method to find a root of the		3x + 4y = z = 7	
	equation :		Unit–III	
	$x^3 - 3x - 5 = 0$	Q. 5.	Find the cubic polynomial which takes the	
	OR		following values :	
Q. 2.	Find a real root of the equation $x^3 - 9x + 1 = 0$,		IUIIUWIIIY VAIUES .	
	by the method of false position.		x : 0 1 2 3	
			y : 1 0 1 10	

J-274 P.T.O. J-274

OR

Q. 6. Determine by Lagrange's formula the percentage

number of criminal under 35 years :

Age	% number of criminals	
Under 25 years	52.0	
Under 30 years	67.3	
Under 40 years	84.1	
Under 50 years	94.4	

- Unit-IV
- Q. 7. Find the first three derivatives of the function

tabulated, at the point x = 1.5:

x : 1.5 2.0 2.5 3.0 3.5 4.0 y = f(x) : 3.375 7.000 13.625 24.000 38.875 59.000

OR

Q. 8. Use Simpson's $\frac{1}{3}$ rd rule to find $\int_0^{0.6} e^{-x^2} dx$ by

taking seven ordinates.

Unit-V

Q. 9.	Use Picard's method to solve $\frac{dy}{dx} = 1 + xy$, with	h
	$x_0 = 2, y = 0.$	

OR

Q. 10. Use Euler's method to find y(0.4) from the differential equation $\frac{dy}{dx} = xy$, y(0 = 1). Take for each step h = 0.1.

J-274

100